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I Question

* How to compete among 100 solar panels?
* How to have a competitive battery market?

* How to assess values of zero marginal cost
resources to the system and welfare?
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I The future tales are already fairy tales

* Solar is the future -yes

* EVs are the future — yes

* Prosumer is the future — yes
* S0 what?

- The penetration rates?

- What will be the countervalling forces? (like
flexibility)

- What will be the marginal value of each future
ready resource?
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I Future of ???

Future of Market Design
Future of Demand

Future of Grid
A cluster of

Unknown

Future of Power System Future of Supply Fut
utures

Future of Policies

Future of Actors

Future of Technology
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I Policy Is very important

Effect of climate change policies on energy system

Support for new technologies

Support for electrification of transport

Future of energy crises
* |International trade - Globalisation
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I The Future of Energy Demand

30 Sources
B Fossil fuels
777 i
Nuclear

" Variable renewables
M Other renewables
Demand growth
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m—— M Space cooling
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L W Electric vehicles
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Developing economies Advanced economies “ Power services*

Electricity demand grows at twice the rate of overall energy demand, from a
variety of end-uses, while renewables and gas increase to meet new demand
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I GDP per capita vs Demand

WEO 2018
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Income levels in developing economies look far from
the point where electricity demand growth might flatten out
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I Demand growth by sector

Advanced economies Developing economies
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Global electricity demand growth would be more than 60% higher in 2040
without projected energy efficiency improvements

Mote: TWh = terawatt-hours; TFC = total final consumption.
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I Additional demand in China

W Additional demand

é 2 400
- 2017-2040
1 800 Share of China in
global growth
(right axis)
1200
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Industrial Household Space Electric Space and
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Elecfricity demand grows for all end-uses in China,
with industrial motors driving the increase
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Demand growth by end use(2040)
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Industrial motors account for a third of the world's appetfite for increased electricity while
providing electricity access to an additional 680 million people accounts for only 3%
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Eqguipment stock and demand

Equipment stock Electricity demand
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mACs “ Fans Refrigeration Cleaning © TVs and computers Other

Rapid growth in the global stock of air conditioners and household appliances
accounts for 65% of the increase in electricity demand in buildings

WEO 2018 12141



E EU% ............................................................................................................................... 8[][] _§ U‘[hE‘I’
m
= = mUnited States
=
L 45% ........................................................................................................................ EDD [ India
M European Union
3[]% ........................................................................................................................ 4[][] China
Electricity
15% """"""""""""""""""""""""""""""""""""""""""""""""""""""""" EDD demand
= J (right axis)
2017 2040 2017 2040 2017 2040 2017 2040
Two/three- Cars Light-duty Heavy-duty
wheelers trucks vehicles

Whereas two/three-wheelers are the most electrified mode, the biggest incremental
electricity demand comes from cars, with China in the lead

Avg 20 kWh~ 100km
TR, cars~148 Billion km ~ 29 TWh 13/ 41
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I Electricity Supply

WEO 2018

World

China

United
States

CE&S Africa Middie India Japan European
America East Union

Southeast
Asia

7000 14 000 21000 2B 000 35 000 42 000 Twh 2017 2040
2017 R ; : i
2025 1 - :
2040 1 [ [
2000 4 000 & 000 8000 10000 12 000 Twh
2017 - |
2025 I
2040 - T

1000 2000 3000 4 000 5000 5000 TWh

—— DY)
s @ e
99D

_— 90
@ I

2017
2025
2044

2017
2025
2040

2017
2025
2040

2017
2025 |
2040

2017
2025
20440

9D

2017
2025
2040

2017
2025
2040

Generation: W Coal Gas | il Nuclear B Bicenergy

B Hydropower B Wind B solar PV Other renewables

Share by source: M Fossil fuels Nuclear B Renewables

14 /41



Power Generation Capacity
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With more than 180 GW under construction, coal fuels the most capacity
until the mid-2020s when natural gas overtakes it, and renewables are on the rise
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I Share of renewables

European Union . B Wind
China R - W Solar PV
Korea : : 1 M Bioenergy
C & S America _ " W Hydro
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BN 7777777/ /7  renewables
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20% 40% 60% 80% 100%

Renewables dominate capacity additions in mosf regions of the world,
propelled by new solar PV and wind power installafions

Note: C & S America = Central and South America.
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Taxonomy of distributed and
renewable resources

Demand Response
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Cost increases with solar penetration

Figure 3.11: Production Costs with Increasing Solar Penetration in ERCOT
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I Cost of technology
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A new term - Value adjusted LCOE

Adjusting the LCOE (illustrative) Components determining the adjustment

= Flexibility = Average

2 2 Y l

= = // system value

SR & 2 % Average

o _ ) specific

o Energy Capacity © % technology

o 5}

- - / Adjustment
/ relative to
/ average
7

Levelised cost Value-adjusted Energy Capacity Flexibility

Combining cosis and value provides a more robust basis for
evaluating compelitiveness across technologies than costs alone
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Evolving Flexibility Needs

" Phase 6
VRE causes excess or
deficit over months
anl:l Seasons
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, .',..- - Require advanced
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| s WA o ) e L
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/ in all measures
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VRE generation share

The size of the power system, flexibility of thermal generation, shape of demand profile,
imply different needs for additional flexibility even at the same levels of VRE
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I Flexibility
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Drivers for flexibility

@ Elactrification
matches wellwith PV

& Rising VRE: wind to
11%, solar PV to 17%

@ Achievemnent of
higher reliakility levels
raises flaxibility

& Varied, complementary
wind resource pattemns

& Increase in
renawable targets

@ Electrification of heat

2 Rising VRE: wind to
31%, solar PV to 8%

¥ Rapid deployment
of EVs

& Mismatch of regicnal
renewakble resources
and loads

@ Significant summer/
winter differences

@ Increasing correlation
of VRE

Key solutions

Enhanced coal flexibility
Battery storage
campensates for limited
pumped hydro expansion

DER cames from

industry, and thermal loads

become a key resource

High shares of flaxible
generation including
hydro resource

Expansion of
interconnections and
reinforcement of
distribution grids

Imvastrnents in storage

Including tapping
pumped hydra

Expansian of
interconnections

Enhanced coal flexibilty

Significant expansion of
storage, a combination
af pumped hydre

and batteries

While flexibillfy needs increase in all reglens in the perod fo 2040, challenges fo

Nexibilty and polential solullons vary widely and are very syslem-specific
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Contributors to flexibility

Power plant flexibility Other flexibility
5 200 GW 1100 GW

GEE - O
2G5, Interconnections 11%

- Batteries 4%

"'"-—--.._____________ Demand response 3%

0il 3%
Other 2%

While power plants remain the cornerstone of flexibility, storage and network investments
play an important part in meeting the needs for increasing flexibility

* Includes pumped storage.
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Battery storage systems

Installed capacity Capital cost
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Declining costs for battery storage systems underpin utility-scale deployment to reach
220 GW by 2040, most of which is paired with renewables

Note: The figure with cost breakdown (on the right) refers to four-hour battery storage.

WEO 2018

24 141



I Electrification of cars Iin Europe

@ ) A40% Electric car
2 France, United Kingdom ICEs phase-out
= fleet
=
B0 e 30% Market share
Scotland ICEs phase-out (right axis)

Denmark, Netherlands, Ireland
and Slovenia ICEs phase-out

Poland 1 million EVs target

2015 2020 2025 2030 2035 2040

Favourable policies drive rapid escalation in the
uptake of electric cars in the European Union
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I 2 sides of Market Design

* Dispatchables

- Fossil supply

- Storage-battery

- Transmission

* Non-dispatchables (now)

Demand
Distributed generation

Renewables

26 /41



I Market Design Question

* Decarbonised system
 Distributed system

* Price signal
- Capacity
- Flexibility

Blockchain
 Dist Co as mini TSO
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I Two market design

On demand As available

(flexible)
generators

(intermittant)
generators

Income fram
flexibility
market

Operatar Operator
dispateches dispateches

generators generators market

Suppliers draw
power from grid

[ -

On demand As available

consum ption consumption

https://www.oxfordenergy.org/publications/decarbonised-electricity-system-future-two-market-approach/

Incame from
as available
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I Transmission network tech
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Mote: Existing technologies and functions are listed in black; new and emerging elements are shown in red. 29/ 41

SCADA = Supervisory control and data acquisition.
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I Aggregation-A solution?
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Systems with Large Amounts of Wind Power: Final Report, Phase One 2006-2008, research note 2493 35/ 41
(Espoo, Finland: VTT, 2009).
Future of the Electric Grid



I Solar - problemsé&solution

Figure 5.1 Feeder Voltage at the Point of Interconnection of a Solar PV System
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Note: The voltage scales on these plots are in a normalized measure called per-unit (pu). The normalizing constant is the
nominal voltage of the line, 13.8 kV in this case. The line is operating at approximately 1.026 pu, which is 14.2 kV.

Source: ©2010 IEEE. Reprinted, with permission, from R. A. Walling and K. Clark, “Grid Support Functions Implemented in
Utility-Scale PV Systems,” paper presented at the Transmission and Distribution Conference and Exposition, 2010 IEEE Power
& Energy Society, New Orleans, LA, April 19-22,2010.

Future of the Electric Grid
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Smart Home concept

.‘ Solar Roof
%%
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Accurate Heating
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Power Grid

@ Electric Energy
@ & Thermal Energy

Utility of the Future, MIT

HOT CYCLE
COLD CYCLE

SERVICES

* Demand Response

= Ancillary Services

* Accurate Heating

* Thermal Services (Hot & Cold)

* Thermal and Electric Solar Panels
* Real-Time Optimization
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I Types of Demand Response

Interruptible Load

Load Controlled

Demand Bidding
and Buy-back
Load asa
Capacity Resource

Spinning Reserves
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Market Administered

Regulation

____________________________________________________________________
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Demand Response and Energy Management
System Business Models

REVEMUESTREAM(S) NUMEBER OF BUSINESS MODELS
@ Erokerage Fees Subscription Fees
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Ut'“ty Of the Future, MIT Customer Segment(s)



I Solar & storage biz models

REVEMUE STREAM(S)
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Entity ISO/TSOYRTO IS0/ TSOYRTO
Residential Residential C/lYM Industrial Load-Serving Residential Residential & DER
& & Industrial Entity & & CASM CA/M & Provider
C/1/M I1SO/TSOYRTO < ElectricVehicle
& Industrial 1SO¢TSOSRTO L

SO/ TSO/RTO

Utility of the Future, MIT
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I Do you want real time feedback

Figure 7.2 Informational Feedback Continuum

1 2 3 4

Estimated Daily/Weekly
Feedback Feedback

(e.g, based on
consumption
I easurem ents,
by mail, email,
self-rmeter)

Standard Billing = Enhanced Billing
(e.g., monthly,
bi-monthly)

(e.g, info and
advice, household
specific
or otherwise)

disaggregation)

Indirect Feedback
(provided after consumption occurs)

5 6

Real-time Real-time Plus
Feedback (e.g., home-area

(e.g., in-home networks, appliance
displays, pricing, disaggregation
signal capability) and/or control)

Direct Feedback
(provided in real-time)

Information Availability

Low
Cost to Implement

High

Economic Framework (Palo Alto, CA, 2009).

Source: Electric Power Research Institute, Residential Electricity Use Feedback: A Research Synthesis and

Future of the Electric Grid
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Communication flows
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Source: National Institute for Standards and Technology, NIST Framework and Roadmap for Smart Grid Interoperability Standards,
Release 1.0, special publication 1108 (Washington, DC: U.S. Department of Commerce, 2010), 35, http://www.nist.gov/public_
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I Cybersecurity vulnerabilities

-

« Insiders
« Hackers/Attackers

Physical
Environment

« Data Centers

« Other Information and
Communications Locations

« Communication Lines

Future of the Electric Grid

Processes

Technology

« Purchasing
+ Hiring
« Software

Development

« Dperations

~\

+ Hardware

« Applications

« Firmware

« Communications/

Interfaces
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I A few words

A
ﬂ‘—"-r-_"—-’"d——_’}
N‘w'_—"-—"‘-‘
/,,/
j;f | Undereshrnateﬂlm
ff ;
—~7 - How humans think about the future
Overestimate - /
% ’ ——  How technological productivity develops
—— }

http://www.rocrastination.com/thoughts/2014/8/28/why-we-overestimate-the-short-term-and-underestimate-the-lon.html
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I Conclusion

* Electric system is bound by physical laws

- Kirchhoff law will be relevant, Faraday etc.
* Economic systems are affected by each other

- Distributed internet services (Remember Napster!)
* Regulation is heavily impacted by technology

- More solar more flexibility regulation
* |n assessing the future

- Observe the hype and ask "what can go wrong"
- Listen but not follow nay sayers, ask "why not"?

- Reality falls in between opposite views. "what are
the boundaries of my reality" 40/ 41
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