ETM521

Lecture 4 – Fundamentals of Power System Operation Barış Sanlı

Review

- Remember the hand dynamo?
 - More load -> slower return
 - More generation -> faster return
- Reactive (balancing of bicycle)
- History
 - Electric and magnetic understanding

Question

If there is no storage, how system matched load and supply?

Resource

POWER GRID OPERATION IN A MARKET ENVIRONMENT

Economic Efficiency and Risk Mitigation

Edited by HONG CHEN

IEEE PRESS

Explaining Power System Operation to Nonengineers, Lennart Soder

The Grid

Active Power Balance

- All sprockets are connected with chains, they rotate at the same speed
- Bike rpm -> system frequency
- Some pedalling (generation)
- Some braking (loads)
- To keep constant speed
 - Total force

System frequency

- Some continuously look at the speed of the bike
- When speed decreases
 - They stoke to pedals
- When speed increases
 - They loose their strokes

Reactive Power Balance

Midpoint

Figure 1. Forces on the tandem bike

Figure 2. Forces on a four-person tandem bike

Boat race

System operation

Acceptable operating conditions

Generation planning & control

EMS

System monitoring

- SCADA
- · Network configuration model
- · State estimation

System operation optimization

- · Generation commitment
- · Generation dispatch
- Voltage var control
- · Transmission loss minimization
- Generation compliance monitoring

Market management system

- Day ahead energy and ancillary market
- Hour ahead energy and ancillary services markets
- · Real-time market
- Settlement
- · Market monitoring

Reliability assessment

- · Scenario analysis (power flow)
- · Static security
- · Transient stability
- · Voltage stability
- · Wide area visibility
- · Remedial action systems (RAS)

Transmission scheduling

- Total transmission capacity calculator
- Transmission capacity reservation and award
- · Transmission tagging

Transmission outage management

- · Request management
- Permit management
- Switching order development
- Outage analysis

Generation load balance

- · Automatic generation control
- Inter-change calculator

Reliability support

- Load forecasting
- · Load allocation predictor

System reporting

- · Alarm processing
- Logging
- Reports

Data management

Customer data

Dispatcher training simulator

Inertia

- Tendency to stay at rest or remain in motion
- The larger the object the more inertia
- Rotating machines not generator
- Power System Stabilizers (PSS)
 - Installed on gens
 - Governors control (the amount of steam/water to turbines)

System Stability/Instability

Generator Dispatch Factors

Three uncertainty

- Capacity
- Ramp rate
- Ramp duration

31 July 2012 – India Blackout

Frequency profile as captured by IIT Bombay

Power system stability

Ancillary Services

Energy

- Regulation & Load Following Services AGC/Real time maintenance of system's phase angle and balancing of supply/demand variations.
- Synchronised Reserve 10 min Spinning up and down
- Non-Synchronised Reserve 10 min up and down
- Operating Reserve 30 min response time
- Voltage Support RPS, Locational Specific
- Black Start (Service Contracts)

CAISO - balancing functions

Integrated Operation

Multi-settlement market design

Duck Curve

Solar eclipse

How regulation works

ACE (Area control error)

- Certain typles of generating units can move up and down in 4s. (regulation units)
- AGC (Automatic generation control)
 - Output of regulation units adjusted (secondary)
- Governors are primary frequency controls

In Europe

- Primary freq reserves
 - 30 seconds
- Secondary freq reserves
 - 15 minuts
- Tertiary freq reserves
 - Slower, take primary&secondary back to reserve

Network Security

- Contingency
 - N-1
- Facility Thermal Limitation
 - Can cause conductors to sag or stretch

Thank you

For more info

www.barissanli.com